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An approximation to the profile of given area with smallest drag in laminar flow 
is obtained (for Reynolds numbers between lo3 and 105). It was shown previously 
by Pironneau (1974) that the skin friction on such a profile has to satisfy certain 
optimality conditions; the method used is based on these results. It was found 
that the optimum profile is long and thin (thickness-to-chord ratio about 10 yo), 
the front end being shaped like a wedge of angle 90' and the rear end like a cusp. 
The drag is very close to the drag on a flat plate of equal length. 

In  a recent paper, Pironneau (1974) found that, if the flow around an aerofoil 
is governed by the steady Navier-Stokes equations 

YV%l-U.VU = vp) v . u  = 0, uJs = 0, ulm = uo, (1) 

the change in drag SF due to a hump of height a(s) on 8 = {C(s) I S E  [O,L]) 
(s = arc length on S) is given by 

where w, the 'co-state ' of u, is the solution of 

vv2w+u.vw-vu.w = vq, v . w  = 0, wIx = 0, wla = 0. (3) 

It was also shown that, given its area, the profile of smallest drag must be such 
that 

au aw aw a.n. (% + 2%) = constant on S. (4) 

Equation (2) implies that if (4) is not satisfied one can construct a profile of equal 
area but smaller drag by displacing S normally through a distance <. 

au au 
a ( s ) = - h  -. -+2-  -k , [an (a, E) ] 

where k is the mean value of 

au au aw 
an * (z + 2%) 

on X and h is small and positive. 
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It was also shown by Pironneau (1974) that w is equal to zero everywhere 
except in a boundary layer around the aerofoil and in its wake, and the boundary- 
layer equations for w were derived. From them it is easy to show that Q = 2w + u 
and r = 2q + p  - &I. u together satisfy 

= 0, Qs1c = us, 

& I s  = 0 (or aQ,/an = 0 on the axis of the wake of S ) ,  Q(co, n) = u,, 

where Q, is the boundary-layer value of Q and C is the outer envelope of the 
boundary layer. A Falkner-Skan type of change of variable shows that these 
equations have a parabolic character (for decreasing s) and that they are 'local' 
at  s = 0; from this it was deduced in Pironneau (1974) that the front end of S 
must be tangential to a wedge of angle 90" (or a cone of angle 111" in three- 
dimensional axisymmetric flow). By making use of results in Landau & Liftshitz 
(1959, $4)  and a local expansion of w it  can be shown that if the boundary layer 
separates at s = s, then 

w, = a'n(sd-s))+o(n) t-0((Sd--S)+). 

Therefore (4) cannot be satisfied at  s = sd, which implies that the rear end of S 
must be shaped like a cusp. Thus we proceeded as follows. 

We chose an initial guess X,, symmetric and of area a = 0.147, by specifying 
the outer boundary C,, of its boundary layer. Then we computed in the potential 
region the tangential speed U ( s )  on C, by the method of singularities (which 
reduces after discretization to the inversion of an N x N matrix, N being the 
number of points of discretization of C,; see Luu 1971). Then u was computed 
in the boundary layer by integration of Prandtl's equations. We chose the 
following discretization (inspired by Keller 1974) : 

with the boundary conditions 

with An = 0.035, M = 250, 47 sections on each half of X, and 11 sections in its 
wake; u, was taken from Rosenhead (1963, p. 237). 
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FIGURE 1. (a)  Outer envelope C, of the boundary layer of S,. ( b )  Tangential speed U(8) 
on C,. (c )  Skin friction aU,l&. (d )  Co-stah function @,I&. (e) Gradient (&,/&) x (aQ,/&). 

Thus td+l w;1s computed from ui by solving the nonlinear system (7); for 
this, we used the method of over-relaxation (Cea & Glowinski 1973). Then Qi 
was computed from Q3+l in the boundary layer by solving 

(Qi-,. - ZQ', + Q<+l)/An2 + [Q:+'/(sj+Z - sj+l) - Q$/sj+l- sj)] u:+' 

+ (Q$+,$$: - Q$-,~i$:)/2An = ~ ( + l / ( s ~ + ~  -aj+,)  - Y : / ( S ~ + ~  - ~ j ) ,  1 (8) 

- Q:(u$+l- 2+1 uj+1 z-l)PAn = (d+* - l )P% 
with the boundary conditions 

Q & =  u$, r f  = 0, Qi = 0 if s < iL ,  Qi = Qi if s j  > +L, QF = u!*. 

Then (aQ/an). (au/an) and its mean were computed and C, obtained from C, 
by normal deformation of size a, according to (5) with h = 0.04. 

25-2 
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FIUURE 2. Tangential speed u, in the boundary layer at the sections indicated 
by a dot on the axis of profile (a) in figure 1. 

Each iteration of this method is quite costly (30 s on an IBM 3701168) and the 
precision is 10-3 for U and for Q, which gives a precision of 0-05 for alh 
and 0.01 for F .  For these reasons, we found that after three iterations it was not 
possible to improve C,, for which the drag coefficient C, = 1.33 (to be compared 
with the value 1.328 for a flat plate), k = 0.10 and the mean of 

[(aulan). (aQ/an) - kI2 

on 8, is 0.6: x Note that (aulan). (aQ/an) is fairly constant on the front 
of the profile while it is too small at  the rear. We think that this is due to the 
discontinuity in (aQ/as). (au/as) at  the cusp, which leads to numerical im- 
precision. 

The profile 8, is obtained from C, by subtracting the boundary-layer thickness 
(which is the only quantity that depends upon the Reynolds number). Other 
profiles of different area are obtained by expansion of C,. 

Thus, owing to the complexity of the problem, the precision obtained is not 
very good. However, this study shows that the method suggested in Pironneau 
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FIGURE 3. Tangential co-state w, in the boundary layer at  the sections indicated 
by a dot on the axis of profile (a)  in figure 1 .  
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(1974) works and that better precision can be obtained if one is ready to pay 
for it. Therefore a fluid mechanics laboratory wishing to solve similar problems 
of optimum design (such as the optimal-wing problem, for example) can proceed 
in this direction. On the other hand, we hope that, in the light of the results in 
figure 3, engineers mill develop an intuitive feeling for the quantity 

(Wan) .  (aQ/an), 

thereby reconciling this approach with optimum design end practical problems. 
The more important cases of turbulent boundary flow also wait for an interpre- 
tation of Q in order to be solved numerically. 
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